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1. INTRODUCTION

1.1 AIVD Project Goals

The Artificial Intelligence for VHSIC Systems Design (AIVD) project was undertaken
in order to enhance the capabilities of the Architecture Design and Assessment Sys-
tem (ADAS),! and to provide additional support for the ADAS software/hardware
codesign methodology. AIVD supports software/hardware codesign in several ways:

o AIVD assists the user in building complex software system models from libraries
of generic algorithms.

o AIVD assists the user in transforming generic algorithm descriptions to meet
hardware resource constraints and interacting software subsystem resource re-
quirements.

o AIVD assists the user in defining software performance attributes in terms of
mission parameters and architecture parameters.

AIVD assists the user in building experiments to explore trade-offs across large
design spaces.

AIVD uses artificial intelligence techniques to implement these capabilities:

e Rule-based programs for software to hardware allocation and for graph trans-
formations.

¢ Transformation rules (in the form of context-sensitive graph grammar produc-
tions) for modifying the structure and attributes of graphs.

o Attribute grammars to define performance measures in terms of mission and
hardware parameters and to back-annotate models with performance results.

1.2 Background

1.2.1 Real-Time System Design Characteristics

The types of system design problems that ADAS was developed to support share
several common characteristics:

TADAS is a registered trademark of the Research Triangle Institute.
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Iterative Processing System design is an iterative process. There are several types
of cycles that can occur in the design process. A system design tool should sup-
port the process of working through all of those cycles efficiently. The most
important iterative cycle to support efficiently is the innermost iteration, i.e.,
the cycle which is repeated most often. AIVD focuses on supporting the incre-
mental modifications to the model based on different system parameters that are
inherent in performing trade-off studies. This gives the system architect more
time to focus on designing different variations of the software and the hardware,
rather than on building the models required to perform trade-off analyses.

Quantitative Trade-offs ADAS was designed to assist the system architect by pro-
viding quantitative performance information. AIVD extends that support to
include the many performance analyses required to make trade-offs. Thus crit-
ical issues for a system architect using AIVD are defining the set of trade-off
experiments to be performed, defining the parameters for those experiments,
and deciding how to interpret the results of the simulations.

Software and Hardware Interactions A basic tenet of the ADAS methodology
is that system performance is based on the interaction between the software
and the hardware. ADAS models this interaction in terms of the mapping
of software to hardware and the contention of software processes for shared
hardware resources. AIVD enhances the ADAS capabilities for automatically
mapping software to hardware.

Multidimensional Design Space The need to perform trade-off studies across
many different design options leads to a multidimensional design space. Typical
trade-off stndies must consider a bewildering number of different design options
and system parameters. Each option and parameter defines a different dimen-
sion of the design space. Each simulation evaluates one point in that design
space. Thus the system architect must use the modeling resources wisely if a
large number of options and parameter values is to be considered. AIVD is
designed to allow the system architecture to explore a wider range of options.

1.2.2 The ADAS View of Software/Hardware Codesign

The first basic assumption that ADAS makes is that timing is a critical design issue.
ADAS focuses on the design and assessment of real-time computer systems. A real-
time system is a system in which there are critical requirements upon the time at
which events occur. These requirements may take several forms:

o The rate at which an input data stream is consumed and processed without los-
ing data may be critical. For example, a sensor must be sampled at a particular




rate.

o The rate at which an output data stream is produced may be critical. For
example, an image must be outputted 30 times a second in order to be flicker-
free.

e The sequence of events may be critical. For example, a parachute must be
deployed before the landing gear is extended.

o The time between events may be critical. For example, the time between sight-
ing a target and launching a weapon must be less than 5 seconds.

The second basic assumption that ADAS makes is that the system software can
be modeled with hierarchical data flow graphs. This assumption is based on extensive
work on the use of data flow graphs for structured systems analysis and structured
system design, pioneered by Tom DeMarco.? ADAS extends this model by providing
attributes for graphs, nodes, and arcs which describe the performance characteristics
of the system. These attributes lead to a capability to simulate the performance of
the system using a form of Petri Nets called marked graphs.

The third basic assumption that ADAS makes is that the system design must take
into account the interactions between software and hardware. ADAS has modified the
marked graph models in order to account for the contention for hardware resources
that are experienced when independent software processes share hardware resources.

The ADAS methodology is based on performing a series of steps to build a model
of the system and then evaluate its performance:

¢ Building hierarchical data flow diagrams which describe the system software.

Defining the performance attributes of the system software.

Building hierarchical block diagrams which describe the structure of the system
hardware.

Mapping software to hardware.

Simulating performance at the marked graph level.

Evaluating the performance results produced by the simulation.

ADAS provides mapping and simulation tools and a graphical user interface to
support the construction of models. AIVD focuses on assisting the user in iteratively
making incremental changes in the models in order to evaluate many trade-off options.

2Tom DeMarco. Structured Analysis and System Specification. Englewood Cliffs: Yourdon Press,
1979.




1.3 AIVD Requirements

The AIVD System Requirements Document describes the requirements for the AIVD
system in terms of:

e A set of five requirements for ADAS which AIVD must support.

o A set of four requirements for AIVD which enhance the capabilities of ADAS.
The ADAS system has five major functions, all of which are supported by AIVD:

Construct System Data and Control Flow This function is currently provided
in ADAS by the graph editor, EDIGRAF.

Verify System Data and Control Flow Consistency This function is currently
provided in ADAS by the consistency checker, CONCH, and by the data flow
analyzer, FLOWBAL.

Map System Data Flow Onto Hardware Resources This function is currently
provided in ADAS by the software to hardware mapper, ASH.

Evaluate System Performance This function is currently provided in ADAS by
the performance simulator, GIPSIM.

Verify System Function This function is currently provided in ADAS on software
graphs by the functional simulators, CSIM and ADASIM, and on hardware
graphs by the HDL interfaces, VHDLGEN, HELIXGEN, and ISPGEN.

AIVD enhances the Construct System Data and Control Flow function with three

~additional subfunctions:

Select Algorithms The Intelligent User Interface (IUI) allows the user to build the
system data flow by selecting algorithms from the Application Domain Hierar-
chy (ADH) and connecting them to implement the system functions. The ADH
provides a hierarchical structure for a collection of domain-specific algorithm
data bases. The IUI allows the user to select algorithms rapidly by moving
around the ADH and allows the user to read help files about the algorithms in
the current application domain.

Transform Algorithms The Graph Transformation System (GTS) supports both
interactive and automatic transformation of generic algorithm descriptions to
fit the software environment and hardware resources.
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Instantiate Algorithms The Attribute Definition Language (ADL) allows the al-

gorithm descriptions in the ADH to be parameterized. The Attribute Definition
Language E' aluator (ADLEVAL) program automatically instantiates a param-
eterized algoriil.m description and provides the specific attribute values required
for the other ADAS tools, such as CONCH, FLOWBAL, GIPSIM, CSIM, and
ADASIM.

Map System Data Flow Onto Hardware Resources AIVD enhances the ADAS

Allocator of Software to Hardware (ASH) to increase compatibility with marked
graph simulator GIPSIM, to allow interactive display and control of the mapping
process, and allow more general optimization rules and mapping constraints.

1.4 The AIVD Design Methodology

The AIVD design process is shown in Figure 1.1.

The process includes several types:

Select Architecture from Hardware Domain Hierarchy. The architecture is de-

scribed by:

e A set of component models (e.g., CPUs, IOPs, Memories, Buses).

e A set of basic models for the interconnection patterns (e.g., a hypercube
would have a 2 node hypercube as a basic component.).

e A set of rewrite rules which would allow particular instances of the archi-
tecture to be built from the basic models (e.g., a hypercube would have a
rewrite rule for building a larger hypercube from a smaller one by copying
the existing hypercube and then connecting all the corresponding nodes in
the two copies).

o A set of attribute definitions which would be used to configure the algo-
rithms.

Transform Architecture In order to simulate a system, a specific instance of the

architecture must be constructed. This is done by configuring an architecture
using the proper nuinber of each type of component and connecting them ac-
cording to the connection patterns of the architecture. With AIVD, the system
architect uses the graph transformation system to connect the components ac-
cording to the specification for the architecture as encapsulated in the graph
transformation rules for the architecture. A design trade-off will cften exper-
iment with different numbers of components. Figure 1.1 shows the change in
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these numbers, Network Size Parameters being the middle loop for the design
process.

Modity Architecture Attributes Typical architecture attributes are processor speed,
memory bandwidth, interconnect bandwidth, and memory size. These at-
tributes will effect the mapping process and the algorithm node processing
times. A design trade-off will often require experiments with different values
for these attributes. Figure 1.1 shows the change in these attributes, Module
Performance Parameters being the inner loop for the design process.

Select Algorithm The user selects appropriate algorithms for each of the system
functions from Application Domain Hierarchy. The ADH is organized hierarchi-
cally by function in order to make it easier for the user to determine which algo-
rithms in the library are appropriate for the particular function and application.
Furthermore, the ADH may have several variations on a particular algorithm,
where different variations are associated with different hardware architectures.
Thus the user may use information about the architecture, as provided by at-
tribute definitions, to select appropriate variations on the algorithms suited to
the functions of the application.

Transform Algorithm The next step is to customize each of the algorithms in
the system to fit the available architecture resources. This is done in a global
context, so that trade-offs for resources can be made between algorithms for
different functions of the system. When the algorithms are selected from the
ADH, they come equipped with different transformations which are needed to
adapt the algorithm to different instances of architectures. Once the architec-
ture has been defined, its characteristics can be used to select the appropriate
transformations for the algorithms. The architect uses the graph transformation
system to customize the algorithm. Typical reasons for making architecture-
specific transformations are:

e Increase the parallelism of an algorithm.

e Decrease the parallelism of an algorithm.

¢ Model the communication costs of an algorithm as distributed across the
architecture.

e Provide the data or processing redundancy needed to support system fault
tolerance.

Modify Algorithm Attributes Once the algorithm has been transformed, the al-
gorithm attributes such as data structure size and operation counts are com-
bined with the architecture attributes such as processor speed, memory band-
width, and interconnect bandwidth to define the produce and consume rates
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and firing delays of the performance model. This process is performed by ADL-
EVAL, using the attribute definition programs attached to the algorithm nodes,
arcs, and graphs, and the ADL include files provided by the architecture model.

Map Software to Hardware The fully instantiated algorithm is mapped to the
fully instantiated architecture using the Allocator of Software to Hardware.

Simulate System In AIVD, the user can evaluate performance by simulating the
system at the marked graph level. Alternatively, the user can build a functional
model using C or Ada 3 code segments for each leaf node, and then perform a
combined functional and performance simulation.

Evaluate Simulation Results This critical step is performed manually by the AIVD
user, who must decide whether or not to continue the search through the design
space and which point in the design space should be evaluated next. The user
implements the decision by setting new parameter values in ADL files, and by
invoking the appropriate tool to start the next cycle through the process.

3Ada is a registered trademark of the U.S. Government (Ada Joint Program Office).
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2. AIVD PROJECT DELIVERABLES

2.1 The AIVD System

The AIVD system structure is shown in Figure 2.1. The system consists of four major
tools interacting with six major data bases and the existing commercial ADAS tool
set. The tools and data bases are described in the following sections.

2.2 The AIVD Tools

2.2.1 The Intelligent User Interface

The Intelligent User Interface (IUI) guides the user in selecting appropriate algorithms
from the Application Domain Hierarchy. The IUI provides a browsing capability for
exploring hierarchical libraries of generic algorithms. This includes viewing the graph
and template hierarchies associated with a library and reading the help files associated
with the library. It also includes an object-oriented editing capability for hierarchical
models, so that the user can point to an object and edit text files associated with the
object, such as an ADL program, Ada or C language source code files, and help files.

2.2.2 The Graph Transformation System

The Graph Transformation System (GTS) aids the user in customizing software to
fit system constraints, including the capabilities of available hardware resources and
the processing requirements of other algorithms that are part of the system model.

Transformations define how to change an algorithm to improve its fit with the
system constraints without changing its function. Transformations can be used-to
increase or decrease parallelism, to insert fault-tolerant features into an algorithm, to
represent the cost of communications delays, or to eliminate unnecessarily redundant
operations from an algorithm’s description.

2.2.3 The Attribute Definition Language Evaluator

ADLEVAL translates ADL programs into script files which can be read by the other
AIVD tools, including the ADAS editor and simulator. The script files set the perfor-
mance attributes of the ADAS models, including node firing_delay and module_class,
inport token_consume_rate and firing_threshold, and outport token_produce_rate.
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2.2.4 The ADAS Simulators

The AIVD tool set is compatible with the three ADAS simulators: GIPSIM, CSIM,
and ADASIM. GIPSIM is a directed graph simulator, while CSIM and ADASIM are
functional simulators using C and Ada, respectively. The AIVD tool set creates a
loosely-coupled interface with the ADAS simulators through the generation of ADAS
script files.

2.2.5 The Allocator of Software to Hardware (ASH)

The Allocator of Software to Hardware (ASH) has been enhanced in the AIVD pro-
gram to employ simulated annealing methodology in assigning software functions to
hardware resources. These functions and resources are represented in ADAS software
graphs and hardware graphs, respectively. The allocations are made in an effort to
minimize the maximum utilizations of given hardware resources.

2.3 The AIVD Data Bases

2.3.1 The Application Domain Hierarchy

The Application Domain Hierarchy (ADH) organizes the descriptions of generic algo-
rithms by application. Each level of the hierarchy has a template file associated with
it containing the templates for all the lower level algorithms. With each level may be
associated transformation rules that can be applied to any of the graphs in the lower
levels of the ADH. At the lowest level, there are several types of information:

o A set of node and arc templates which refer to common libraries of basic algo-
rithms, such as sort algorithms or Fourier transform algorithms.

e The ADL programs for each of the algorithms describing the performance char-
acteristics of the algorithm, typically in terms of the number of instructions
executed or in terms of the number of operations required.

e Ada program fragments for the primitive algorithms which are developed to the
level needed to support functional simulation of the algorithm.
2.3.2 The Hardware Domain Hierarchy

The Hardware Domain Hierarchy (HDH) contains the descriptions of potential archi-
tectures. For each architecture, there are several types of information:
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e A set of node and arc templates which refer to common libraries of components,
such as 1750A or 32020 processors, PI-Bus or TMDE interconnections, and
different memory architectures.

e A set of transformation rules for building an instance of the architecture from
the components.

o A set of transformation rules for adapting a software algorithm to the architec-
ture.

e A set of ADL descriptions of the performance characteristics of the components
of the architecture and information about the operating system for the archi-
tecture, such as compilation rates for estimating machine code size from source
code.

2.3.3 The Transformation Rule Base

The transformation rule base is a set of ADAS graphs, each of which describes the
patterns and transforms of a consistent set of rules designed to transform a software
data flow graph in order to achieve a specific purpose. Transformation rule bases may
be developed for a specific application by the user or may be constructed by selecting
and then merging rules that are distributed throughout the ADH and the HDH.

2.3.4 Attribute Definition Language Programs

ADL programs describe the ADAS node, graph, and arc attributes in terms of for-
mulae which use system parameters defined by the user. These parameters typically
consist of:

e Mission parameters.
¢ Hardware performance parameters.

e Parameters used for back annotation.

The ADL supports two types of communication: inheritance and synthesis. Inheri-
tance allows parameters to be defined at a global level (such as the root graph of the
system software hierarchy) and inherited into all nodes and arcs in the subgraph below
the graph where they are defined. Inheritance is appropriate for distributing mission
parameters to all the software nodes. Synthesis allows parameters to be computed
by aggregating the values of ADAS attributes in a subgraph to define the value of an
attribute in the parent node or graph. Synthesis is appropriate for back-annotating
either software or hardware graph hierarchies.
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2.3.5 ADAS Software Data Base

The ADAS software data base is a hierarchy of data flow graphs. It serves as the
central working data base during an AIVD session, which typically involves multiple
trade-off experiments. At the top levels of the hierarchy, it describes the functions of
the system. At the middle levels of the hierarchy, it describes the algorithms and data
structures that provide the functions required of the system. At the lowest levels of
the hierarchy, it describes the partitioning of the algorithms and data structures to
fit onto the system hardware architecture.

The attributes of the ADAS software graph hierarchy describe the performance
characteristics of the system, including the amount of time it takes to perform each
atomic action of each algorithm and how much input and output data is required for
each atomic action.

2.3.6 ADAS Hardware Data Base

The ADAS hardware data base is a hierarchy of graphs which describe the structure
and components of the system hardware architecture.

The ADAS hardware graph hierarchy constrains the possible mappings performed
by ASH. Each component of the architecture belongs to a module_class and each
atomic action of each algorithm must be mapped to a hardware component with the
same module_class. Each arc of the software data flow graph must map onto a node
or arc of the hardware graph. During simulation, atomic actions of algorithms must
contend for the shared resources of the hardware components.

The attributes of the ADAS hardware graph hierarchy describe the performance
characteristics of the components of the architecture, such as sensors, processors,
memories, and interconnections.

2.4 The AIVD Workstation

As part of the AIVD project, RTI installed an AIVD workstation at the Army LAB-
COM, Electronic Technology and Devices Laboratory, Ft. Monmouth, NJ. This
workstation consisted of a VaxStation II/GPX with 19 inch color monitor, 4 mil-
lion bytes of fast storage, and 70 million bytes of disk storage. The workstation was
equipped with the VMS Version 4.5 operating system. Languages supported by the
workstation included DEC Ada, DEC C, and Quintus Prolog Version 2.0. Applica-
tion tools provided with the workstation included RTI's ADAS Version 2.5 and the
AIVD tools.
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2.5 AIVD Documents

In parallel with the sequence of reviews for this project, RTI and Octy, Inc. produced
and delivered a series of documents describing the system as it went through its
development cycle. The documents included:

The AIVD System Requirements This document describes the system require-
ments, the relationship between ADAS and AIVD, and describes some scenarios
for the use of the AIVD tools.

The AIVD User Reference Manual RTI and Octy developed two different ver-
sions of the reference manual. The draft version was used as an aid in developing
the specifications of the tools that were implemented. The final version describes
the tools which were actually delivered.

The AIVD Tool Specifications RTI and Octy developed two different versions of
the specification document. The draft version describes the Intelligent User In-
terface commands, the Attribute Definition Language, and the Transformation
Rule Base format. The final version describes the IUI commands, a revised def-
inition of the Attribute Definition Language, the Graph Transformation System
and the Transformation Rule Base, and the Allocator of Software to Hardware.

The AIVD Demonstration Plan The AIVD Demonstration Plan describes the
example that was used for demonstrating the power of the tools and the inte-
gration of the tools. The example is based on the Synthetic Aperture Radar
{SAR) example described in Bowen and Brown, “Systems Design,” Volume II
of VLSI Systems Design for Digital Signal Processing.

2.6 The AIVD Demonstration

2.6.1 The Demonstration Scenario

The AIVD demonstration has the following steps:

Select a Design Domain Use the IUI to access the Application Domain Hierar-
chy. Demonstrate the capability to review the various application subdomains.
Select the SAR subdomain to develop the demonstration application design.

Create a Generic Software Graph Demonstrate the use of the IUI to create a
top-level application SAR design as shown in Figure 2.3. Use ADLEVAL to
instantiate all graph, node, and arc attribute values which are needed by the
GTS to select rules, evaluate matches, and choose transformations.
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Transform the Generic Software Graph Use GTS to complete the design by ap-
plying appropriate graph transformations and instantiating the attribute values
dependent upon hardware operating characteristics. Demonstrate the control
mode capabilities of GTS.

Map the Transformed Software Graph to the Hardware Use ASH to map the
resulting designs to a hardware configuration.

Compute the Performance Attribute Values Use ADLEVAL to instantiate at-
tribute values dependent upon hardware operating characteristics.

Simulate and Evaluate the Designs Use GIPSIM to simulate the performance of
the designs as mapped to the hardware configurations.

2.6.2 Demonstration Data Bases
2.6.2.1 The Application Domain Hierarchy

The Application Domain Hierarchy (ADH) developed for the demonstration consists
of a four level taxonomy of application-specific functions. The structure of the ADH
is not necessarily a tree, but rather a DAG, since several functions may be shared
across different domains or subdomains (such as Fourier transforms). This hierarchy
is implemented by parallel ADAS graph hierarchies and directory structures. The
first level of the hierarchy defines three major application domains:

e Radar processing.
e Image processing.

e Sonar processing.

The radar processing domain is divided into two specific project areas: Synthetic
Aperture Radar (SAR) and AWACS. Subdomains of the SAR domain may be shared
among other radar processing domains. Two such potential subdomains would be a
doppler processing domain and a range processing domain.

Each ADH domain may contain software graph files, template files, Attribute
Definition Language (ADL) files, transformation rule bases, and help files pertinent
to that domain. Figure 2.2 depicts a portion of the ADH tree structure created for
the demonstration.

Figure 2.3 shows the ADAS data flow graph of a synthetic aperture radar algo-
rithm. The purpose of a SAR is to obtain high resolution two-dimensional ground
images from air-to-ground or satellite-to-ground radar data. The input range data
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consists of vectors of complex data values; each vector contains 9978 data points and
the frequency of generation of data vectors is 1418 Hz, for a total input data rate of
about 14 million complex values per second.

The basic processing algorithm is a two-dimensional filtering operation on a data
array of 2048 range vectors to achieve high radar resolution in both range and az-
imuth. The filter is implemented as two one-dimensional filters. one in range (“range
compression”) and one in azimuth (“azimuth compression”).

The first filter operation is done on individual range vectors. The output range
vectors are stored in a “corner turn” memory to form azimuth frames, which consist
of a total of 2048 range vectors. (This process actually stores only 1732 new vectors
each frame; a 316 vector overlap completes the 2048 vector frame.) Azimuth vectors
are read out in a sequence of 9978 vectors, each a length of 2048 complex numbers.
The azimuth vectors are filtered to achieve an azimuth compression and high azimuth
output resolution.

Figure 2.4 shows the transformed version of the SAR data flow graph after it has
been adapted to the FTPP architecture. Each of the processing and memory nodes
has a subgraph representing a Triple Modular Redundant (TMR) implementation for
fault tolerance. Each arc in the original data flow graph now has an associated com-
munications node. Each communications node has a subgraph showing the various
hardware resources required to transmit the message from its source to its sink.

2.6.2.2 The Hardware Domain Hierarchy

The demonstration data bases include a Hardware Domain Hierarchy (HDH) which
serves the function of collecting the information on the architecture models. This
is parallel to the function that the ADH serves in collecting information about the
algorithm models. In the HDH delivered as part of the demonstration system, two
candidate architectures are included: the Common Signal Processor (CSP), and the
Fault-Tolerant Parallel Processor (FTPP). Each of the two candidate architectures,
CSP and FTPP, are stored in separate subdomains. Both of these have subdomains
for each of their components as described below.

Within each HDH domain lie hardware graph files, ADL files, and help files per-
tinent to that domain. The top level domain for each architecture alse contains the
hardware template file for that architecture. Figure 2.5 depicts a portion of the HDH
tree structure created for this demonstration.

The candidate hardware designs are the CSP of IBM and the FTPP of Charles
Stark Draper Laboratories. Both architectures are modular in design, and both em-
phasize high performance processing. The latter design includes high-reliability pro-
cessing features.
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The modules of the CSP considered in this demonstration are the Floating Point
Processing Element (FPPE), the Global Memory (GM), the Sensor Interface (SI),
the Element Supervisory Unit (ESU), the TM and PI Bus, and the Data Network
Element (DNE).

The components of the FTPP are the Processing Element (PE), the Input/Output
Element (IOE), the Network Element (NE), and the Memory Element (ME). All
components are grouped into clusters which consists of Fault-Masking Groups (FMG)
which are elements tightly-coupled to preserve highly-reliable characteristics.

For the demonstration, the hardware modules onto which the SAR functions are
mapped fall into four classes: processing element, memory element, input/output
element and bus. Table 2.1 contains the architecture modules and their classifications.

Hardware Classification | Architecture
(module_class) CSP | FTPP

Processing Element (PE) | FPPE | PE
Memory Element (ME) GM ME
I/O Element (IOE) S1 IOE
Bus (BUS) DNE | NE

Table 2.1: Architecture Hardwas= Module Classifications

2.6.2.3 The Transformation Rule Base

This section describes the graph transformation rules which are used to demonstrate
the capability of GTS to complete the design of the system initially defined by Fig-
ure 2.3. Two sets of transformation rules were developed for the demonstration.

The first set is designed to optimize the performance of any algorithm graph buit
from filters for a generic multiprocessor architecture. This set of rules is used to
customize the SAR graph by:

¢ Implementing the filters as a pipeline with an FFT, a vector multiply, and an
inverse FFT.

e Partitioning the FFT operations into smaller parallel FFTs which can be dis-
tributed on multiple processors.

¢ Segmenting the corner-turning memories to allow parallel access.
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The second set is designed to adapt a generic algorithm to the FTPP architecture.
This set of rules is used to customize the SAR graph by:

¢ Implementing each processing function with Triple Modular Redundancy (TMR).

¢ Including the communications costs for transmission of the data both between
fault containment regions and between FTPP processor clusters.

GTS selects and applies a sequence of graph transformations to the algorithm data
flow graph in order to develop a final design which is specialized for the input goals
and/or hardware constraints that have been specified. GTS transform rules include
evaluation rules which evaluate the filter process and determine what transform to
select to implement it.

2.7 AIVD Reviews

The AIVD project was punctuated by a series of project reviews. The AIVD project
was unusual in that each review included one or more prototype demonstrations.
These demonstrations allowed the project reviewers to get a hands-on feel for the
system that was evolving and to provide real-time direction in the design of the
system.

The reviews were:

Kickoff Meeting At the kickoff meeting, an initial version of the Graph Transforma-
tion System was demonstrated by Octy. In this version, the rules were encoded
in Prolog, and only a single rule and a single match location could be processed.
At this review, the plans for the proposed AIVD development were presented
and discussed.

Preliminary Design Review The major focus of the Preliminary Design Review
was to present the design of AIVD. Two documents were presented: a draft User
Manual and a System Requirements document. The User’s Manual focused on
the issues of the user interface for the system. The design of the Attribute
Definition Language was presented in detail, and the relationship between the
ADL and the VHDL was discussed.

Critical Design Review At the Critical Design Review, three tools were demon-
strated: a new version of the Graph Transformation System, an initial version
of the Attribute Definition Language Evaluator, and an initial version of the
Intelligent User Interface. These tools were demonstrated in concert with the
ADAS tools processing a model of the AWACS Track While Scan algorithm.
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The Graph Transformation System was shown reading the ADAS graph version
of the Transformation Rule Base. A first iteration of the AIVD specifications
was presented.

Test Plan Review At the Test Plan Review, an initial version of the enhanced Soft-
ware to Hardware Mapper was demonstrated, along with revised implementa-
tions of the Attribute Definition Language Evaluator and the Graph Transfor-
mation System. The revised AIVD specification document was presented and
discussed, and plans for testing AIVD were described.

Final Review At the Final Review, the AIVD workstation was installed at Army
LABCOM, and all of the tools were shown working together to perform the
system demonstration.




3. THE AIVD DEVELOPMENT APPROACH

3.1 Overview of Approach
The AIVD development approach is based on four novel principles:

Parallel Construction of Prototypes and Specifications At each review of the
AIVD project, different versions of the prototype tools were demonstrated. At
the same time, each of the two major documents (the User’'s Manual and the
System Specifications) went through two major revisions. This parallel de-
velopment of prototypes and specifications ensured that the documents were
consistent with the final delivered product, and that the review teams (and
the tool developers) could effectively guide the design through feedback based
on hands-on experience with the prototypes. This approach was particularly
valuable given the geographic distribution of the development team. Defining a
series of versions of the tools, so that the system could be “grown” rather than
“built,” required more design effort at the beginning, but ensured a product
that met expectations at the end of the project.

Loosely Coupled Design In order to foster parallel development of different tools,
and to reduce the effort required for integration of the tools, two decisions were
made early in the project that defined the interfaces between the tools. All
the tools would communicate through two mechanisms: the commercial ADAS
data base files and commercial ADAS script files. These interfaces remained
both simple and stable for the life of the project, and made integration of the
tools relatively easy.

Based on Commercial ADAS The AIVD system was built around the latest com-
mercial version of ADAS. Two of the ADAS tools were replaced. The Intelligent
User Interface replaced the ADAS graph editor EDIGRAF. The enhanced Al-
locator of Software to Hardware replaced the commercial version of ASH. As a
result of this development, all of the other commercial ADAS tools can be used
with the AIVD tools. Either EDIGRAF or the IUI can be used to build the

software graphs and the transformation rule base.

Application of AIVD on a Parallel Project An important resource for any tool
builder is a set of tool users who are willing to work with prototype versions
of the tools. The AIVD development team was fortunate to have application
projects available which needed the capabilities of the AIVD tools even in pro-
totype form. The results of using one of the AIVD tools is described below.
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3.2 An Application of AIVD

During the development of the AIVD tools, a parallel project was started at RTI
called “The Design and Assessment of High Performance, High Reliability Systems”
(DAHPHRS). This project was done under NASA contract NAS1-17964, Task 20.
The contract monitors were Lt. Gale Paeper from RADC and Wayne Bryant from
NASA/LaRC. The RTI project leader was Charlotte Scheper. There were two sub-
contractors: Honeywell SRC under the direction of Dr. Sudah Yalamanchili and
Virginia Polytechnic Institute under the direction of Dr. Gail Gray.

DAHPHRS involved the evaluation of the performance and reliability of two al-
gorithms on three different architectures. The Attribute Definition Language was
used to capture the performance effects of the mission parameters. The fault-tolerant
transformations and communications transformations developed for the AIVD final
demonstration were based on the needs of this project.

3.2.1 Description of Application

The DAHPHRS application consisted of two battle management C3I algorithms. The
algorithm described below is used to manage Directed Energy Weapons (DEWs). The
processing is designed to allocate DEWSs to targets (which are enemy ICBMs). The
processing will be done in space and on a battle management platform, which will be
communicating with multiple sensor platforms and weapons platforms. The sensor
platforms (the BSTS’s) will be acquiring and tracking the targets while they are in
boost phase. Thus the information available to the battle management algorithm
will be information on the expected position of the targets, the target values, and
information about the status and characteristics of the weapons.

The performance requirements of this system were determined by response time
requirements. In general, 5 seconds would be allowed for the system to respond to
a request for target sequencing instructions. A fall-back requirement was a response
time of 30 seconds.

There were four major mission parameters defined for the problem:

The Number of Targets The number of targets ranged over the values of 25, 50,
100, and 200.

The Number of Weapons The number of weapons ranged over the values of 5 and
10.

The Number of Clusters The number of clusters was fixed at 10.
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The Redundancy Level The redundancy level is the number of shots that must
be taken at each target to ensure a kill. For this study, the redundancy level
was fixed at 3.

These parameters were used to determine processing times and data structure sizes.
In turn, the data structure sizes were used to determine communication costs.

3.2.2 The High Level Model

The top level data flow model of the Weapons to Targets Assignment and Target Se-
quencing (WTA/TS) algorithm is shown in Figure 3.1. There are four major functions
shown:

Target Cluster Definition This function groups the targets into clusters based on
the distance between the targets. The DEW’s cannot be aimed rapidly in widely
divergent directions. In order to minimize the time between shots and thus
maximize the number of shots taken by each DEW, the targets are clustered,
and then weapons are assigned to targets within a cluster.

Weapon to Cluster Assignment This function assigns the weapons to the clus-
ters. In order to achieve the required level of redundancy, each cluster must be
assigned multiple weapons. The number of weapons depends upon the number
of targets in the cluster and on the level of redundancy. No weapon is assigned
to more than one cluster.

Weapon Assignment This function assigns the targets in the cluster to the weapons
committed to the cluster. This function can be performed in parallel, with the
assignments for each cluster proceeding independently.

Target Sequencing This function determines the sequence of shots for each weapon
to ensure that each target assigned to the weapon is shot at the best time to
eliminate the target. This is a complex problem, since both the targets and the
weapons are moving independently, and the weapon will have a limited time
for firing. This function can be performed in parallel, with the assignments for
each weapon proceeding independently.

These functions work on seven major data structures:

Interdistance Matrix The interdistance matrix describes the distances between
the targets.
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Target Processing Time The target processing time matrix describes how long
the directed energy beam from each weapon must dwell on each target in order
to disable the target.

Weapon Slew Time The weapon slew time matrix describes how long it will take
to shift each weapon to point at each target.

Kill Probability Matrix The kill probability matrix describes the probability that
each weapon will destroy each target.

Utilization Matrix This matrix describes how much energy each weapon must ex-
pend to destroy each target.

Target Due Date Vector This vector describes the time when this target will be
out of range, hidden, or will complete boost phase (and hence be much more
difficult to detect).

Target Value Vector This vector describes the priority for destroying each target.

Figure 3.2 shows the Attribute Definition Language program for the WTA/TS
graph. This program defines the values of the mission parameters, collects the hard-
ware parameters, and defines the data structure sizes in terms of the mission param-
eters. The variables defined in the graph program are inherited into any node or
arc ADL file in the hierarchy that wants to use this information. Figure 3.5 shows
the ADL program for a node in the Target Cluster Definition subgraph. This ADL
program uses the variables which it has inherited from the WTA/TS graph ADL
program.

The first step was to build an ADAS simulation of the WTA/TS graph assuming
a single 1 MIPS processor. This configuration clearly did not meet the performance
requirements. With 25 targets and 10 weapons, execution time exceeded 10 seconds.
With 25 targets and 20 weapons, execution time approached 40 seconds. With 200
targets and 10 weapons, execution time exceeded 340 seconds. With 200 targets and
20 weapons, execution time exceeded 360 seconds. This study also pointed out the
relative dependence of the model on different parameters. Changes in the number of
weapons affected the response time linearly, while changes in the number of targets
affected the response time exponentially.

The second step was to analyze the utilization of the processing resources to deter-
mine the bottlenecks and see if a parallel implementation could improve performance
sufficiently to meet the requirements. Figure 3.3 shows the distribution of resource
utilization by the different major functions at different numbers of targets. An inter-
esting phenomenon shows up. For small numbers of targets (e.g., 25) the Weapons
to Target Cluster Assignment Function uses most of the single processor’s time, but
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int: -- Key Input Parameter Declaration
nbr_targets, -- The number of targets (N).
nbr_clusters, -- The number of clusters (C)
nbr_weapons, -- The number of weapons (W).
redundancy, -- Weapon assignment redundancy (R).

-- Hardware Parameter Declaration

fpt_mult, -- Floating point MPYs per millisecond
mips, -- Instructiors per millisecond

io_rate, -~ Flca* .ng point I/0s per millisecond
read_fpt; ~-- Floating point READs per millisecond

-~ Data Structure Sizing Calculations
dim_size = nbr_targets * nbr_targets;
di_size = nbr_targets;

Gc_size = nbr_clusters;

Lwc_size = redundancy * nbr_clusters;
Lwt_size = redundancy * nbr_targets;
pij.size = nbr_targets * nbr_weapons;
Tij_size = nbr_targets * nbr_weapons;
tip_size = nbr_targets;

Uij_size = nbr_targets * nbr_weapons;

Figure 3.2: WTA/TS Graph ADL Program
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for larger numbers of targets, the Target Cluster Definition function uses most of the
resources. A second aspect is that there are simple techniques for making the Weapon
to Target Assignment and the Target Sequencing functions parallel, but they use very
little resources. In order to meet the response time requirements, the Target Cluster
Definition function must be made parallel.

3.2.3 The Detailed Model

The third step was to investigate the Target Cluster Definition function to see what
could be done to make it execute in parallel. Figure 3.4 shows the data flow of the
TCD function. There are three major modules in the TCD function:

Gradient, LaGrange, and Median This module uses linear programming tech-
niques to create clusters based on the distances between targets. The median
distances between targets in a cluster are also computed. The linear program-
ming solution defines probabilities that targets should be assigned to clusters.

Cluster Formation This module uses the median information and the cluster prob-
abilities to assign targets to clusters. Once the clusters are defined, the clus-
tering is evaluated. If the cluster size is sufficiently close to the goal, then
the cluster definitions are passed on to feasible cluster definition. Otherwise,
another linear programming iteration is performed.

Feasible Cluster Definition This module creates lists of target assignments for
each cluster.

The TCD function uses only one major data structure, the Target Interdistance
Matrix. The structure of the algorithm features a loop, where a linear programming
approach to the solution is iteratively refined in order to achieve the integer solution
desired.

Figure 3.5 shows the Attribute Definition Language program for the GLM node.
This program uses the values of the mission parameters and data structure sizes
which it inherits from the WTA /TS graph ADL. It also inherits the TCD iteration
count TCD LIc from the TCD graph. The inherited values are used to determine the
firing delay attribute for the node and the consume, threshold, initial, and produce
attributes for the ports of the GLM node. This allows the user of the system to be
hidden from the ADAS attributes and terminology and to concentrate instead on the
definition of the mission and hardware parameters.

Figure 3.6 shows the relative use of a single processor’s computing resources by
the three different modules as a function of the number of targets. While the relative
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op_count = TCD_LIc * 8 * nbr_targets * nbr_targets;
instr_count = TCD_scale * op_count;

mpy._count = TCD_LIc * nbr_targets;

io_ops = TCD_LIc * (xim_size + dim_size + Cim_size);
firing_delay = ( instr_count/mips ) +

( mpy_count / fpt_mult ) +

( io_ops / read_fpt );

-- Consumes an entire dim matrix each iteration
token_consume_rate(in0) = TCD_LIc * xim_size;
firing_threshold(in0) = token_consume_rate(in0);

-- initial_token_count(in0) = token_consume_rate(in0);
-- Consumes an entire xim matrix each iteration
token_consume_rate(inl) = dim_size;
firing_threshold(inl) = token_consume_rate(inl);

-- Produces an entire Cim matrix each iteration
token_produce_rate(out0) = TCD_LIc * Cim_size;

Figure 3.5: GLM Node ADL Program

utilizations of the functions in the WTA/TS graph varied considerably as a function
of the number of targets, the utilizations of the modules within the TCD remained
relatively constant. Unfortunately, while there are ways of partitioning the GLM
module so that it can execute in parallel, there are no obvious ways of partitioning
the Cluster Formation module. Since Cluster Formation has the highest utilization,
making GLM parallel can improve performance by at most 40%. This limits the
benefits of parallel architectures for this problem.

3.2.4 Software Partitioning and Parallelism

The algorithms which had been developed were originally implemented on a sequen-
tial processor. In order to meet the response time performance requirements, the
algorithms needed to be adapted to take advantage of the available computing re-
sources in the multiprocessor environment addressed by the DAHPHRS study. Two
techniques for improving the performance of the algorithm were evaluated: pipelining
and parallelism.

A cursory evaluation of pipelining the algorithms at the macro level indicated
that this approach would not be effective. The primary issue at the macro level
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was response time, not throughput. Pipelining increases system throughput at the
possible cost of an increase in response time. At a lower level of detail, pipelining
could be very effective if the individual processors supported pipelining.

At the macro level, the algorithm provided several opportunities for coarse grain
parallelism. These opportunities were captured in the form of parallel subgraphs for
the top level operations. These parallel subgraphs were designed to serve as models for
graph transformation rules. Simulation of these models revealed that the utilization
of some inherently sequential tasks limited the benefits of parallelism.

As described above, the limiting factor in this case is the ability to make the
Cluster Formation module parallel. Without a parallel version of Cluster Formation,
at most a factor of 2 speedup can be achieved. This is not nearly enough to achieve
the desired performance requirements.

3.2.5 Communication and Fault Tolerance

A second set of issues related to this project is the cost of fault tolerance. The cost of
fault tolerance was evaluated in the context of the FTPP architecture, which provides
both parallel processing and fault tolerance. The FTPP approach to fault tolerance
involves the use of Triple Modular Redundancy and quadruplicate voting. There is
an obvious cost in terms of additional hardware required for TMR, but there is also a
significant performance cost imposed by the need for frequent voting of intermediate
results.

In order to evaluate the overhead costs of communication and fault tolerance,
a parallel algorithm was constructed (which introduced communications costs) and
mapped onto a FTPP architecture with multiple clusters and multiple TMR processor
groups per cluster. The GLM algorithm was partitioned into four parallel processes.
Figure 3.7 shows three different mappings of the parallel version of the GLM and shows
the additional costs imposed by the fault tolerance algorithms of the FTPP. The three
different mappings are based on different distances for the communications. The first
pair of bars shows a one cluster system, where no intercluster communications are
required. The second pair of bars shows a two cluster system, where half of the
interprocessor communication requires intercluster communications. The third pair
of bars shows a four cluster system, where all interprocessor communications requires
intercluster communications, and the longest communications must traverse of four
clusters, including the source and the sink clusters. The cost without fault tolerance
was modeled by assuming that the fault tolerance algorithms could be performed in
zero time.

Three conclusicns emerge from examining Figure 3.7. The first is that there are
significant overhead costs in distributing the parallel modules across multiple clus-
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ters in the FTPP architecture. The second is that significant performance overhead
is associated with the FTPP implementation of fault-tolerant communications. The
third is that the proportion of execution time associated with the FTPP implementa-
tion of fault-tolerant communications increases as the distance of the communication
increases. This makes intercluster communication involving more than two clusters
very unattractive.
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4. FURTHER WORK

The goal of the AIVD effort was to develop prototype tools which would use artificial
intelligence techniques to extend the ADAS tool set capabilities. Experience with
AIVD indicates that we have succeeded in meeting our goal. There is still a long
way to go before AIVD is a standard part of every system designer’s toolkit. In this
section, some of the steps that still need to be taken to make AIVD reach its full
potential are discussed. These steps fall into three categories:

o Further application of AIVD tools.
e Enhancements of AIVD tools.

e Converting AIVD to a production quality system.

4.1 Further Application of AIVD Tools

RTT will continue to use the AIVD tools in their current configuration in order to
support its work on the modeling of systems. Several projects will begin shortly
which will make use of these capabilities. These projects range from further work on
C3I systems for the Strategic Defense Initiative, to fault-tolerant, distributed avionics
systems for military and commercial aircraft.

AIVD is designed to support the use of reusable libraries of both algorithms and
architectures. As RTI uses the AIVD tools, it will be accumulating design experience
in the form of algorithm and architecture libraries and rule bases for using those
libraries.

4.2 Further Enhancement of AIVD Tools

Experience with AIVD points out the need for more work in developing these tools
to make them more “user friendly.” This section describes some of those techniques.

4.2.1 Develop a System Experiment Environment

Some of the early design work on AIVD focussed on the need for a System Experiment
Environment (SEE). In keeping with the AIVD design approach of simplifying the
interfaces, a very rudimentary version of an SEE was developed for the AIVD demo.
The demo uses VMS command files to construct scenarios for running multiple tools,
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each in its own window. While this approach is sufficient for the demo, a full-time user
would prefer an integrated environment, where the equivalent of the command files are
generated graphically and interpreted interactively. This type of environment requires
extensive work in integrating the AIVD tools which were developed independently into
a common user environment.

The SEE would support batch experiments, where the user interactively defines
a complete experiment a priori and then submits the experiment definition to the
workstation operating system for a batch run. The batch run will produce the final
edited results without intervention by the user. The SEE should also support interac-
tive experiment execution where the user can monitor the experimental process and
modify the approach during the middle of the experiment.

In order to avoid overwhelming the user with huge quantities of data, the SEE
should provide a set of data reduction techniques which will allow the user to edit the
results from many simulations into tables which contain critical results. These tables
can be read by other tools or plotted in formats readily accessible to the user.

4.2.2 Enhance the Graph Transformation System

The current Graph Transformation System provides the user with a powerful tool for
creating system data flow graphs. More experience is needed to fully understand the
capabilities and limitations of the current tool. However, even at this stage in its
use, there are several parts of the system which could be improved. One is the way
that the transformation process is controlled. Both the rule selection and the match
and transform evaluation processes need to be extended. In particular, an enhanced
GTS should be able to compare specific instantiations of different patterns. Different
representations for higher level control techniques (i.e., the selection of pattern and
transformation sets) need to be evaluated and implemented. Also, an understanding
of how to define very high-level goals that can be understood by both the mapping
program and GTS needs to be developed.

An enhanced GTS should permit more interaction with the mapping tool and the
simulator. In particular, an enhanced GTS should be able to process the same set
of design goals and constraints that the mapping tool uses. Also, GTS should get
feedback from the mapping tool which will allow it to generate graphs which more
accurately reflect the communications overhead for multihop transmissions.

Different pattern matching strategies need to be evaluated in order to reduce the
total cost of pattern matching as part of the transformation process. Strategies which
are cost-effective should be implemented.

Different mechanisms for user interaction with the GTS need to be evaluated so
that a user can get a better understanding of where the transformation process stands.
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These mechanisms include the display of the transformation status, the display of
proposed matches, and the display of the current transformation rules.

An enhanced GTS should be able to access static performance analysis capabilities
that have been developed for ADAS. These packages would allow GTS to estimate
the performance of an intermediate transformed graph and suggest transformations
based on the available performance information.

4.2.3 Enhance the Software to Hardware Mapping Program

More work is needed in enhancing the ASH in order to allow the user to interact with
the ASH and in order to allow the ASH to deal with additional real world constraints.

Further work is needed to improve communications between the ASH and the
GTS. In particular, the insertion of communications nodes, which is done by the
GTS, needs to be based on information provided by ASH, including mapping in-
formation. This could lead to an iterative process where GTS and ASH are called
alternatively in order to create a graph which can be mapped properly and can also
meet the performance modeling capabilities which the communications node libraries
can provide.

Different mapping goals and constraints shall be investigated to determine if they
can be used effectively in the mapping process. One particular area of importance for
new goals and constraints is in the area of supporting fault-tolerant computing. The
mapping program needs to support constraints which require that certain computa-
tions be mapped to different fault-masking groups of the architecture. These types
of constraints will be developed and implemented.

4.3 Converting AIVD to Product Quality

The current implementation of AIVD is a prototype. Prolog was used to provide rapid
prototyping capabilities. All of the AIVD tools should be converted to C in order to
allow portability, better performance, and compatibility with the other ADAS tools.
The decision to build AVID as a set of loosely coupled tools needs to be reversed
in a product version. Finally, a great deal more testing and better error handling
capabilities are needed.




5. CONCLUSIONS

The goal of the AIVD effort was to develop prototype tools which would use arti-
ficial intelligence techniques to extend the ADAS tool set capabilities. Preliminary
experience with AIVD indicates that we have succeeded in meeting this goal. Feed-
back at the AIVD demo indicates that many users believe that AIVD will provide
a major increase in the productivity of ADAS users. This improvement in produc-
tivity will arise from many factors. The use of the ADL and GTS will reduce the
amount of time that users spend on tedious, repetitive, and error-prone steps. The
use of ADL and GTS to build models will not only reduce the work for users, but
will also help to document the models that are produced. Furthermore, the formal
documentation provided by the ADL descriptions and the rule bases will help users
in verifying that the models they build are correct. Finally, the ADL descriptions and
GTS transformations will help make ADAS models much more reusable. It is in this
final capability that the largest potential for increased productivity lies. However,
the greatest benefits of reusability will not be achieved until libraries of algorithm
and architecture descriptions have been constructed. AIVD provides some tools for
building those libraries, but other projects will have to populate them.

The AIVD experience seems to validate the development approach used for this
project. A focus on prototypes, and a pattern of supporting multiple releases of only
two documents, rather than a more formal development based on freezing require-
ments, specifications, designs, etc., paid off. The use of very simple interfaces may
have reduced the convenience of the tools, but it made integration of the tools into a
prototype system much easier.

Finally, although AIVD accomplished a lot, there is much more that needs to
be done. AIVD defines a skeleton for algorithm and architecture libraries, but did
not populate them. Further work is needed in integrating the tools into a System
Experiment Environment.
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